

DURABIO

25 February 2021

DURABIOTM a transparent bio-based engineering polymer developed by Mitsubishi Chemical. DURABIOTM its transparency similar to that of PMMA but with a much better impact behavior and an improved heat resistance. DURABIOTM beats the well-known inferior properties of PC in regards to scratch resistance, hardness and chemical resistance. That is why DURABIOTM closes the gap between PC and PMMA.

KEY FEATURES

- Excellent optical and mechanical properties
- Superb UV-resistance
- Ductility, with strong impact resistance
- High heat resistance
- Scratch resistance
- Chemical inertness
- BPA free, Biobased
- Easy to print

Low Birefringence Excellent Transparency DURABIOTM High Impact Resistance (Multi-axial Impact) PMMA Surface Hardness Bio-based Content Flame Retardance

DURABIO™ comparative general properties

COLOURS

Filament Specs.					
Size	Ø tolerance	Roundness			
1.75mm	± 0,05mm	≥ 95%			
2.85mm	± 0,10mm	≥ 95%			
Material Properties					
Description	Testmethod	Typical value			
0 10	100 4400				

Testmethod	Typical value
ISO 1183	1,31 g/cm ³
ISO 1133	13 g/10min
ISO 527	64 MPa
ISO 527	130%
ISO 527	2300 MPa
ISO 179	9 kJ/m²
ISO 178	2100 MPa
ISO 178	94 MPa
ISO 75	92°C
ISO 75	82°C
ISO 13468	92%
	ISO 1183 ISO 1133 ISO 527 ISO 527 ISO 527 ISO 179 ISO 178 ISO 178 ISO 75

Print Properties

Typical value Description 0.25mm Nozzle Size Dimafix * **Bed Adhesion** 240±10°C Nozzle Temperature ≥100°C **Bed Temperature** Layer Height 0.2mm **Print Speed** 50 mm/s 50% Fan Speed 100% Extrusion Multiplier / Material Flow **Retraction Distance** 5.5mm **Retraction Speed** 35 mm/s Difficulty to Print Intermediate **Drying Required** min. 5 hours suggested

^{*} Dimafix is used with a glass buildplate.

ADDITIONAL INFO

 $\mathsf{DURABIO}^\mathsf{m}$ is particularly designed for applications requiring exceptional visual appearance with scratch and impact resistance as well as chemical inertness.

Mechanical Specifications

During additional research a print profile has been made which was optimized for achieving a highest possible tensile performance. Table 1 shows the typical values of an injection moulded specimen compared to a 3D-printed specimen in both the X-Y axis (3D-printed horizontally) and the Z-axis (3D-printed vertically). After that, some important parameters are given and the corresponding trend is briefly described.

Table 1: Tensile data of both injection moulded and 3D-printed specimens.				
	Injection Moulded	3D-Printed X-Y *	3D-Printed Z *	
Young's Modulus [MPa]	2300	2283	2380	
Stress at Yield [MPa]	64	69	55	
Stress at Break [MPa]	-	56	56	
Strain at Yield [%]	-	6	4	
Strain at Break [%]	130	Z Canada & Ramana Amana	5	
		A remaining		

Most important parameters:

When increasing the Nozzle Temperature the Stress at Yield will increase

When decreasing the Fan Speed the Stress at Yield will increase

%

When increasing the Material Flow the Stress at Yield will increase

Print Conditions

All specimens have been printed using a 0.4mm nozzle and the layer height was set to 0.2mm. The room in which the 3D-printer was located had an environmental temperature of \pm 25°C.

*Test Conditions

The tensile tests have been carried out according to ISO-527 using modified 1BA specimens (3D-printing) and 1A specimens (injection moulding). The room in which the Universal Testing Machine was located had an environmental temperature of \pm 20°C.

MCPP Netherlands B.V. cannot be held responsible for any inaccuracies. No guarantees can be given since differences in data could be caused by differences between individual 3D-printers.

